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Introduction:  Ice I exhibits a complex rheology 
at temperature and pressure conditions appropriate 
for the interiors of the outer ice I shells of Europa, 
Ganymede, and Callisto.  We use numerical methods 
to determine the conditions required to trigger 
convection in an ice I shell with a stress-, 
temperature-, and grain-size-dependent rheology 
measured in laboratory experiments by Goldsby and 
Kohlstedt [2001] (henceforth GK2001).  Triggering 
convection from an initially conductive ice shell with 
a non-Newtonian rheology for ice I requires that a 
finite-amplitude temperature perturbation be issued to 
the ice shell [2].  Here, we characterize the amplitude 
and wavelength of temperature perturbation required 
to initiate convection in the outer ice I shells of 
Europa, Ganymede, and Callisto using the GK2001 
rheology for a range of ice grain sizes. 

Numerical Implementation of Ice Rheology:  
The strain rate for each mechanism in the composite 
rheology is described by 
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where 
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˙ "  is the strain rate; A, n, p, and Q* are 
experimentally determined rheological parameters; d 
is the ice grain size, R is the gas constant, and T is 
temperature (see Table 1).   
 GK2001 provide an alternate set of creep 
parameters for grain boundary sliding and dislocation 
creep in ice near its melting point, but we do not 
include this effect in our present models.  If the 
viscosities due to GBS and dislocation creep in the 
warm ice near the base of the shell are much smaller 
than described here, convection might be possible in 
ice shells thinner than described by our models.   
 To implement a viscosity due to all four 
deformation mechanisms simultaneously, we 
rephrase the composite flow law of GK2001 in terms 
of viscosities using 
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approximate solution for the total viscosity [3], 
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due to volume diffusion (diff), dislocation creep 
(disl), grain boundary sliding (GBS), and basal slip 
(bs).  An explicit stress-dependent rheology of form: 
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is used for each term in equation (2).  To non-
dimensionalize the rheology, we divide each term in 
equation (2) by the viscosity due to volume diffusion 
at the melting temperature of ice, 
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The transition stresses between the deformation 
mechanisms are mathematically represented by a 
series of weighting factors (β) between the four 
component rheologies, which govern the relative 
importance of each mechanism as a function of 
temperature and grain size [3]. Each viscosity 
function is expressed in non-dimensional coordinates 
(primed quantities) as 
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where 
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) is the non-dimensional stress, 
E=Q*/nRΔT is the non-dimensional activation 
energy, Ev=Qv

*/nRΔT, and T’
o is the reference 

temperature. 
 We use a reference Rayleigh number defined by 
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where ρ=930 kg m-3 is the density of ice, g is the 
acceleration of gravity, α=10-4 K-1 is the coefficient 
of thermal expansion, ΔT is the temperature 
difference between the surface and the base of the 
shell, D is the thickness of the ice shell, and κ=10-6 
m2 s-1 is the thermal diffusivity.  In a non-Newtonian 
fluid, viscosities in the layer may evolve to values 
larger or smaller than ηο depending on the vigor of 
convection.  The viscosity at the melting point near 
the base of the ice shell is 1013 Pa s when volume 
diffusion and dislocation creep are the dominant 
rheologies.  When GSS creep accommodates 
convective strain, the viscosity in the convecting 
interior of the ice shell is 1014 to 1015 Pa s. 

Initial Conditions: The approach we use to 
numerically determine the critical Rayleigh number 
is similar to linear stability analysis [4,5].  The 
convection simulations are started from an initial 
condition of a conductive ice shell plus a temperature 
perturbation expressed as a single Fourier mode, 
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where δT and λ are the amplitude and wavelength of 
the temperature perturbation, and z=-D at the warm 
base of the ice shell.  

The simulation is run for a short time to 
determine whether the initial perturbation grows and 
convection begins, or decays with time due to 
thermal diffusion and viscous relaxation, causing the 
ice layer to return to a conductive equilibrium [Barr 
et al., 2004].  For a given pair of δT, λ values, we run 
a series of convection simulations with decreasing 
values of Rao.  The critical Rayleigh number is 
defined as the minimum value of Rao where the 
system convects for a given initial condition, and 
here is determined to three significant figures. 

Following the procedure described in [2], we 
determine the wavelength of perturbation for which 
Racr is minimized, and investigate how Racr varies 
with the amplitude of temperature perturbation.  Over 
the range of grain sizes used in this study (d=0.1 mm 
– 10 cm), the critcal wavelength is constant at 1.75D.   

Results: We find that the critical Rayleigh 
number for convection varies as a power (-0.24) of 
the amplitude of initial temperature perturbation, 
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for perturbation amplitudes between 3 K and 30 K.  
Based on the results of [2], we expect the critical 
Rayleigh number to reach a constant asymptotic 
value for δT>0.25 ΔT.   

Values of the fitting coefficient Racr,0 depend on 
the grain size of ice, and can be fit to a polynomial in 
log-log space, 
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which can be combined with the definition of the 
Rayleigh number to obtain a scaling between the 
critical ice shell thickness for convection, the grain 
size of ice, and the amplitude of temperature 
perturbation.   

Implications for the Icy Galilean Satellites: 
Figure 1 illustrates the variation in critical shell 
thickness (Dcr) for convection in Europa as a function 
of grain size. If the ice grain size is <1mm, Dcr < 30 
km because relatively low thermal stresses are not 
sufficient to activate weakly non-Newtonian GSS 
creep, so plume growth is controlled by Newtonian 
volume diffusion.  For grain size >1cm, Dcr< 30 km 
because thermal stresses can activate strongly non-
Newtonian dislocation creep, and the ice softens as it 
flows.  For intermediate grain sizes (1-10 mm), 
weakly non-Newtonian GSS creep controls plume 
growth, yielding critical shell thicknesses close to the 

maximum permitted shell thickness for each of the 
Galilean satellites.   

Future Work: GK2001 provide an alternate set 
of creep parameters for GBS and dislocation creep in 
ice near its melting point, but we have not yet 
included this effect in our models.  If the viscosities 
due to GBS and dislocation creep in the warm ice 
near the base of the shell are much smaller than 
described here, convection might be possible in ice 
shells thinner than found here.  
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Table 1.  Rheological Parameters a 
Rheology A (mp Pa-n s-1) n p Q* (kJ mol-1) 
Volume Diffusion 3.5 x 10-10 b 1 2 59.4 
Basal Slip 2.2 x 10-7 2.4 0 60 
GBS 6.2 x 10-14 1.8 1.4 49 
Dislocation Creep 4.0 x 10-19 4.0 0 60 
a After Goldsby and Kohlstedt [2001].  bFor Tm=260 K. 
 
 

 
Figure 1. Critical shell thickness for convection in Europa 
as a function of grain size, from equation (9). (a) Volume 
diffusion accommodates creep during initial plume growth, 
and the critical shell thickness for convection increases as a 
strong function of grain size. (b) GSS creep controls plume 
growth, and the critical shell thickness achieves a 
maximum value close to the maximum permitted shell 
thickness.  (c) Dislocation creep accommodates flow, 
yielding smaller values of critical shell thickness. 
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